Automatic Image Colorization Via Multimodal Predictions

نویسندگان

  • Guillaume Charpiat
  • Matthias Hofmann
  • Bernhard Schölkopf
چکیده

We aim to color greyscale images automatically, without any manual intervention. The color proposition could then be interactively corrected by user-provided color landmarks if necessary. Automatic colorization is nontrivial since there is usually no one-to-one correspondence between color and local texture. The contribution of our framework is that we deal directly with multimodality and estimate, for each pixel of the image to be colored, the probability distribution of all possible colors, instead of choosing the most probable color at the local level. We also predict the expected variation of color at each pixel, thus defining a nonuniform spatial coherency criterion. We then use graph cuts to maximize the probability of the whole colored image at the global level. We work in the L-a-b color space in order to approximate the human perception of distances between colors, and we use machine learning tools to extract as much information as possible from a dataset of colored examples. The resulting algorithm is fast, designed to be more robust to texture noise, and is above all able to deal with ambiguity, in contrary to previous approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Representations for Automatic Colorization

We develop a fully automatic image colorization system. Our approach leverages recent advances in deep networks, exploiting both low-level and semantic representations. As many scene elements naturally appear according to multimodal color distributions, we train our model to predict per-pixel color histograms. This intermediate output can be used to automatically generate a color image, or furt...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Multiple Hypothesis Colorization

In this work we focus on the problem of colorization for image compression. Since color information occupies a large proportion of the total storage size of an image, a method that can predict accurate color from its grayscale version can produce a dramatic reduction in image file size. But colorization for compression poses several challenges. First, while colorization for artistic purposes si...

متن کامل

Epitome for Automatic Image Colorization

Image colorization adds color to grayscale images. It not only increases the visual appeal of grayscale images, but also enriches the information contained in scientific images that lack color information. Most existing methods of colorization require laborious user interaction for scribbles or image segmentation. To eliminate the need for human labor, we develop an automatic image colorization...

متن کامل

Machine Learning Methods for Automatic Image Colorization

Automatic image colorization consists in adding colors to a new greyscale image without any user intervention. The problem, stated like this, is ill-posed, in the sense that one cannot guess the colors to assign to a greyscale image without any prior knowledge. Indeed, many objects can have different colors: not

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008